
It  is  a s s u m e d  that  waves  play the ro le  of i r r e g u l a r i t i e s  here ,  s ince,  as in [1], the dimension of the i r r egu l a r i t i e s  

in the equation for  kt~ is r ep laced  by half  the ampli tude.  

In conclusion,  le t  us indicate  the boundar ies  within which the theore t ica l  conclusions hold. They a r e  de-  
t e rmined  by the r e q u i r e m e n t  that  the wave n u m b e r  k [ k ~ l ,  which is the bas i s  for der iv ing  Eq. (1.1)], the pa -  
r a m e t e r  e (e~ 1, which is the basis  for  cons t ruc t ing  the solution), and the ampl i tude a re  al l  smal l ,  al lowing us 
to d i s r e g a r d  the dependence of tangential  s t r e s s  on wave profi le .  By imposing these r e q u i r e m e n t s  on e, k, and 
~, we find that  these  r e q u i r e m e n t s  hold when Re is less  than 104-105 if 10 <Re < 100 in the case  of water ,  for  
example ,  under  downs t ream cocur ren t  condit ions.  
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D R O P  E V A P O R A T I O N  IN A T U R B U L E N T  G A S  J E T  

V .  F .  D u n s k i i  a n d  Y u .  V.  Y a t s k o v  UDC 532.517.4 

Evapora t ion  of a s e m i d i s p e r s i v e  drop s y s t e m  in a turbulent  g a s  jet  is considered.  A method 
for  calcula t ing drop evapora t ion  in a turbulent  gas jet is p roposed  based on a s impl i f ied  so lu-  
tion of the sca t t e r ing  p rob lem for  an evapora t ing  admixture .  Evapora t ion  of wa te r  as  it  is 
a tomized  in a turbulent  a i r  jet  is exper imenta l ly  studied. Approx imate  a g r e e m e n t  is obtained 
between the r e su l t s  of the calcula t ions  and exper iments .  

In con t r a s t  to evapora t ion  p r o c e s s e s  of an individual drop,  which have been widely studied and a r e  a m e -  
nable to calculat ion,  actual  evapora t ion  p r o c e s s e s  of sy s t ems  of drops  have been hard ly  studied at  all. 

The concept  of two evapora t ion  r e g i m e s  of drop s y s t e m s  in a turbulent  gas jet,  namely ,  kinetic and dif-  
fusion, has  been introduced [1]. The r a t e  of evaporat ion of the s y s t e m  is de te rmined  in the kinet ic  r e g i m e  by 
the kinet ic  evapora t ion  of an individual drop,  and by the r a t e  of diffusion of the externa l  gas as  a whole in the 
diffusion reg ime .  The de terminat ion  of the evapora t ion  r e g i m e  in a turbulent  drowned jet  was c a r r i e d  out by 
means  of the E c r i t e r ion  [1]. 

Kinet ic  drop evapora t ion  conditions a r e  rea l i zed  when E>> 1 and diffusion condit ions,  when E << I .  

Drop evapora t ion  in a turbulent  drowned jet  in the kinetic r eg ime  has been cons idered  [2]. It was shown 
that i r r e v e r s i b l e  e ject ion of drops  f r o m  the jet  core  in the slowly moving pe r iphe ry  a t  which the evaporat ion 
p r o c e s s  is consummated  is cha r ac t e r i s t i c  for  the sca t t e r ing  of an evaporat ing impur i ty  in a turbulent  jet. As 
a resu l t ,  s ca t t e r ing  of the evapora t ing  impur i ty  occurs  m o r e  rapidly  than of the nonevaporat ing (conservat ive)  
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Fig. i 

impuri ty ,  and cannot be desc r ibed  by exis t ing  sca t t e r ing  theor ies  for  a conserva t ive  impur i ty  in turbulent  
je ts .  The app rox ima te  equation [2] 

AN 
s = ~ --- 3 ( x / x , , )  ~ - -  2 (x lx ,~)  s (1) 

has been p roposed  for  the sca t t e r ing  of an evapora t ing  impur i ty .  Here  ~ is the degree  of evaporat ion of 
the liquid of the jet  a t  a d is tance  x units f rom the nozzle ,  AN is the number  of drops  depar t ing f rom a s e c -  
t ion of the jet  co re  of length x,  N o is the total  number  of drops  pass ing  through the init ial  jet  c r o s s  sect ion 
in i see ,  and x m is  the length of the jet  core .  

It  has  been p roved  [2] that  the a g r e e m e n t  between expe r imen t s  and calculat ions us ing equations de-  
t e rmin ing  the value of the length x m of the je t  core  is s a t i s f ac to ry  both under  diffusion and under  kinetic 
conditions in the case  of the evapora t ion  of a monod i spe r s ive  wa te r  d rop  s y s t e m  in a turbulent  drowned 
a i r  jet. 

It m a y  be expected,  in view of the nature  of previous  hypotheses  [2] in der iving equations to de t e r -  
mine Xm, that  such computa t ional  fo rmu la s  will be useful for  approx imat ing  evapora t ion  in engineer ing 
p r o c e s s e s  of a tomiz ing  liquids in turbulent  cocu r r en t  s t r e a m s .  

Expe r imen t s  us ing  the device schemat i ca l ly  depicted in Fig. 1 were  ca r r i ed  out to ve r i f y  these hy- 
potheses .  Ai r  in jected by the pneumat ic  pump i flows f rom a cyl indr ica l  p robe  2 with radius  R 0 = 15 m m  
at  a mean  ve loc i ty  U0= 106 m / s e c ,  fo rming  the turbulent  jet  3 (Re~. 200,000). Liquid (water) p roceeds  hap-  
hazard ly  f rom the tank 4 to the nozzle  5 s i tuated coaxia l ly  with the probe and is a tomized  as  the high- 
veloci ty  a i r f low is e jec ted  f r o m  the nozzle in fine drops,  which a r e  s ca t t e r ed  in the jet  and vapor ize .  The 
c o m p a r t m e n t  m e a s u r e d  10 • 5 .7•  2.8 m ~. 

A bench method [3] was used to de t e rmine  the drop dimension spec t rum.  The a i r - d r o p  jet  is d i -  
r ec ted  into a wind tunnel 6 with radius  0.35 m and length of working sect ion 2.4 m. The axia l - f low fan 7 
c r e a t e s  an a i r f low in the tunnel with a mean  ve loc i ty  of 6.3 m / s e e .  A tube 8 m e a s u r i n g  14 m m  in d i am-  
e t e r  f r e e ly  s l ipping on guide bushes  is v e r t i c a l l y  s i tuated re la t ive  to the exi t  d i a m e t e r  a t  the exit  f rom the 
working sect ion of the tunnel. An immobi le  bar  9 is found inside the tube. The tube contains a sl i t  10.2 
m m  in width, turned counter  to the airf low. The plane working sur face  of a bar  m e a s u r i n g  700 m m  long 
and 5 m m  wide is a l so  turned counter  to the flow and is p r e l im ina r i l y  coated with a thin l ayer  of carbon 
black and with a thin l aye r  of magnes ium oxide f rom above. Drople ts  suspended in the a i r f low that en-  
counter  the tube (due to the i r  inertia) a r e  deposi ted on it. The tube is shif ted during the exper imen t  f rom 
the e x t r e m e  upper  posit ion to the e x t r e m e  lower  posit ion a t  a constant  ve loc i ty  by the act ion of a load 11; 
this ve loc i ty  is due to the hydraulic  cyl inder  12, whose plunger  is connected to the lower  end of the tube; 
here  the bar is un i formly  exposed and drople ts  that fly off through the s l i t  a r e  deposi ted on the working 
su r f ace  of the bar ,  p i e rce  the magnes ium oxide l aye r ,  and pass  through the l ayer  of carbon black. They 
fo rm c i r c u l a r  i m p r e s s i o n s  aga ins t  a white background which a r e  counted and m e a s u r e d  under  a m i c r o -  
scope  and broken down into c l a s s e s  of d imens ions ,  taking into account  the a r e a  scanned.  
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The d e g r e e  of evapo ra t i on  of d rops  in the jet  is d e t e r m i n e d  at a d i s tance  of 2.15 m f r o m  the p robe  
by m e a s u r i n g  the a t tenuat ion  of  l ight  as  a l ight  beam p a s s e s  th rough  the a i r - d r o p  jet .  The l ight  in tens i ty  
f r o m  the l a m p  13 was  m e a s u r e d  by the p h o t o r e s i s t o r  14; the d e g r e e  to which light in tens i ty  d e c r e a s e d ,  
c~ = I / I o ,  w h e r e  I is the in tens i ty  of  l ight  that  p a s s e s  t h rough  the a e r o s o l  jet and I 0 is the in tens i ty  of l ight 
in the absence  of the jet ,  is  de t e rm i ne d .  

The v a r i a b l e  I is a p p r o x i m a t e d  by the equat ion [4] 

I ~ k r p n ,  

where  n is the computed  p a r t i c l e  concen t r a t i on ,  k is a coeff ic ient ,  and p = 2 for  p a r t i c l e s  whose  rad ius  is 
s e v e r a l  mul t ip [es  the wave length  of l ight  k (which c o r r e s p o n d s  to the expe r imen ta l  condit ions)  in the a b -  
sence  of mul t ip le  l ight s c a t t e r i ng ,  i .e . ,  fo r  a low n u m e r i c a l  p a r t i c l e  concen t ra t ion  n). 

In our  e x p e r i m e n t s  we thus a s s u m e d  the dependence  

(2) 

where  n = Q0/[(4vr~/3)Q1] is the m e a n  counted  d rop  concen t r a t ion  in the a i r - d r o p  flow pas s ing  th rough  the 

V2n,rJ 
tube, r 1 = ~2'h is the m e a n - v o l u m e  d rop le t  rad ius ,  s =~'r~ is the m e a n  a r e a  of  the d rop le t  c en t e r  s e e -  
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rich, r2= ~, n~ is  the mean  drople t  radius  re la t ive  to sur face  a r e a ,  Q0 is liquid flow ra te ,  and Q1 is  

gas flow r a t e  through the initial jet  sect ion.  

Resu l t s  of expe r imen t s  with a w a t e r - g l y c e r i n e  mix tu re  c a r r i e d  out for  d i f ferent  liquid flow ra t e s  
Q0 were  used  to v e r i f y  the appl icabi l i ty  of Eqs.  (2); s a t i s f ac to ry  a g r e e m e n t  between the m e a s u r e d  va lues  
of t~l/c~ 2 and va lues  calcula ted using Eq. (2) was obtained. The calcula ted  va lues  were  10 to 15% below 
those m e a s u r e d .  

The degree  of evapora t ion  of wa t e r  d rops  in a jet  sect ion x units f rom the nozzle has the fo rm 

Qo 

or, when the initial water and water-glycerine mixture flow rates are equal (Q0 =Q*o), 

Oo" e = l  - -  q---~-. 

The degree  of l ight at tenuation by wa te r  drops  is given by 

- -  r 
~ ~ -  / ~ 8  ~-~- ~ 

4 ~ r ~  , ~ 

3 Q~ 

where  Q0 and Q*0 a r e  the initial wa t e r  and w a t e r - g l y c e r i n e  mix tu re  flow r a t e s  and Q'0 and Q'I a r e  wa te r  
and a i r  flow r a t e s  through a sect ion x units f r o m  the nozzle.  

F o r  the w a t e r - g l y c e r i n e  mix tu re  drops  we have 

A t  " 2  

~ '  = n's - '  = V o ~ 2  
4 ~ r ; 3  ' 

and the ratio 

~ '  2 *3 
~dor2rl 

~---~'2 3' Qor2 rl 

so that  

Qo VSr22r3t 
"~0 = r 3 

and, consequently,  the degree  of evapora t ion  is given by 

ar~2r3 (3) 
8 ~ - - "  2 .3 . "  

r2r i 

Here  an a s t e r i s k  denotes  the mean  drop rad ius  of the w a t e r - g l y c e r i n e  mixture .  

The va lues  of ~,  ~ ' ,  r l ,  r2, r*l ,  and r* 2 we re  de te rmined  exper imen ta l ly  and the value of the degree  
of evapora t ion  for  x = 2.15 m was found using Eq. (3). 

In al l ,  four  pa i r s  of e x p e r i m e n t s  we re  c a r r i e d  out (four with wa te r  and four with the w a t e r - g l y c e r i n e  
mixture) ,  d i f fer ing only by the liquid flow r a t e ,  namely ,  0.5 l i t e r / r a i n ,  1.0 l i t e r / r a in ,  2.0 l i t e r / r a i n ,  and 
3.0 l i t e r s / r a i n .  Each expe r imen t  was repea ted  6 to 10 t imes .  The re su l t ing  drop dimension distr ibution,  
ave r aged  for  each exper imen t ,  a r e  p r e sen t ed  in Figs .  2-5. In tegra l  drop dimension curves  re la t ive  to 
liquid weight for  wa te r  a r e  depicted by a broken line, while the solid l ines depict  these curves  fo r  the 
w a t e r - g l y c e r i n e  mix ture ;  the digits  on the curves  denote the number  of the exper iment .  A var ia t ion  of 
liquid flow r a t e  within a given range  does not influence the dis t r ibut ion curves  to any g r e a t  extent  in a c -  
cordance  with the N u k i y a m i - T a n a s o v  equation [4]. The drops  were  somewhat  l a r g e r  in all  ca ses  for  the 
w a t e r - g l y c e r i n e  mix tu re  than for  water .  Averaged  conditions under  which the expe r imen t s  were  c a r r i e d  
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out and the exper imental  and theoret ical  values of the degree of evaporation of water  a 1 and ~ axe presented 
in Table 1, in which t and w rep resen t  the t empera tu re  and relat ive humidity of the surrounding air ,  

It was n e c e s s a r y  to v a r y  previous [2] calculated degrees  of evaporation r in o rder  to compute them 
from the data of our experiments .  As a result ,  jet  lengths x m were determined in Eq. (i), since the ex-  
per iments  were c a r r i e d  out in a wind tunnel, i.e.,  under conditions corresponding to the propagation of a 
turbulent jet in a gas s l ips t ream,  while previous [2] equations re fe r  to a turbulent drowned jet. 

Propagat ion of a turbulent jet in a gas s l ips t ream [5] is charac te r i zed  b y a n u m b e r m  =ul/u0,  where 
u 1 is s l ips t ream velocity.  In our case,  this number is low (m~ 0.06), so that we may  use previous approxi-  
mation theory  [5]. 

Gas veloci ty  on the jet axis is given by 

U, r a -  Lr 1 - -  
12-4Ro (% -- ~I) (4) 

X 

where R 0 is the radius of the initial jet section. 

The impuri ty  concentrat ion (counted drop concentration) on the jet axis is given by 

where 

= ~m0.t34 (i -- m) + 0.258m 

no AumO,180 (t -- m) + 0.428m 

Aura= u~--u 1 =t2"4R o 
~2 0 - -  t t  1 X 

The equation for determining jet length for the diffusion regime is t ransformed,  taking iato account 
these equations, into the form 

- -  b + ] /  b 2 - 4 q c  ( 5 )  
X m  ~ 2 q  ' 

0.428m (c o -  c ) QI 

where q = pQo ' 

b =  [ 2'23B0 (l - m)(c~ - -  3.2mRo]; 
PQo 

c = -- 20.6 (1 -- m) R~; 

c o is the concentrat ion of vapor  sa tura ted  at the tempera ture  of the drop surface and c~o is vapor  concen- 
t rat ion in the surrounding gas.  

For  a jet in a s l ips t ream we have for low m, as in the case  of a drowned jet, 

where R is jet radius.  

It can be proven that Eq. (1) remains  true for a jet in a s l ips t ream by using these equations and re -  
producing the conclusions presented in [2]. 

The t rans i t  t ime ~2 for a path x m units of iner t ia less  par t ic les ,  i.e., moving at  a i r  veloci ty  along the 
jet axis in the s l ips t ream,  can be determined by integrating Eq. (4), setting u :  d.x/d% 

T2 = .!xul t2.4 Bo (%u~ -- u,) In Lt @ 12.4Bo (u ~ _ ul ) . 

If drop occupation time in the jet core is set  equal to Maxwell total drop evaporation time [6], 

r]p 
~ i  = 219 (~o - -  c,~)' 
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w e  obtain an equation for  n u m e r i c a l l y  de te rmin ing  x m under  the kinetic r eg ime  fo r  a jet  in the s l i p s t r e a m ,  

xm 28,6B0 (U0ut -- u,) lg 1 + t2,4R0-~0 -- u,) -- 2D (c o -- cr162 (6) 

We m a y  es tab l i sh ,  using the E c r i t e r i on  [1], that expe r imen t s  1, 2 and 3, 4 (Figs.  2 and 3) were  c a r r i e d  
out in the kinet ic  r e g i m e ,  while e x p e r i m e n t s  5, 6 and 7, 8 (Figs.  4 and 5) were  c a r r i e d  out in the diffusion 
r eg ime .  Je t  co re  length x m was  calcula ted  us ing  Eq. (5) accordingly  f rom data of expe r imen t s  5 and 6, 7 
and 8, and the degree  of evapora t ion  e at  a d is tance  x=2 .15  m was then calcula ted using Eq. (1); the co r -  
responding  va lues  of 7.45% and 16% a r e  p resen ted  in Table  1. 

The value of x m was n u m e r i c a l l y  (graphically) de te rmined  using Eq. (6) for  each  drop f ract ion in 
calculat ing e for  the kinetic r e g i m e  (exper iments  1 and 2, 3 and 4), and the value of e i for  x=2.15  m was 
ca lcu la ted  us ing  Eq. (6); the r e l a t ive  amount  of evapora ted  wa te r  A t =  eig i was  ca lcula ted  for  a re la t ive  
weight  gi of the given fract ion.  The degree  of evapora t ion  for  the en t i re  se t  of drops  was de te rmined  by 
the sum a=zAe=Y~ig i ;  the co r re spond ing  va lues  of 17.6% and 18.4% a r e  p re sen ted  in Table 1. 

It  is evident f r o m  Table  1 that  va lues  of e 1 obtained exper imen ta l ly  and values  of e calcula ted using 
our equations a r e  suff icient ly c lose  (ff we take into account  the approx imate  nature  of both the exper imenta l  
and computat ional  methods  for  de te rmin ing  e). This  indicates  that  our method can be used to approx imate  
the evapora t ion  of a liquid as  it  a t o m i z e s  in turbulent  gas jets .  
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